BLAS: "Basic Linear Algebra Subprograms". More...

Functions | |
| void | add_bias (float *output, float *biases, int batch, int n, int size) |
| void | axpy_cpu (int N, float ALPHA, float *X, int INCX, float *Y, int INCY) |
| SAXPY constant times a vector plus a vector. Uses unrolled loops for increments equal to one. | |
| void | backward_scale_cpu (float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) |
| void | backward_shortcut_multilayer_cpu (int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization) |
| int | check_sim (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) |
| void | constrain_cpu (int size, float ALPHA, float *X) |
| void | constrain_min_max_ongpu (int N, float MIN, float MAX, float *X, int INCX) |
| void | constrain_ongpu (int N, float ALPHA, float *X, int INCX) |
| void | copy_cpu (int N, float *X, int INCX, float *Y, int INCY) |
| SCOPY copies a vector, x, to a vector, y. Uses unrolled loops for increments equal to 1. | |
| float | cosine_similarity (float *A, float *B, unsigned int feature_size) |
| float | dot_cpu (int N, float *X, int INCX, float *Y, int INCY) |
| SDOT forms the dot product of two vectors. Uses unrolled loops for increments equal to one. | |
| void | fill_cpu (int N, float ALPHA, float *X, int INCX) |
| float | find_P_constrastive (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) |
| float | find_sim (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) |
| void | fix_nan_and_inf_cpu (float *input, size_t size) |
| void | flatten (float *x, int size, int layers, int batch, int forward) |
| void | get_embedding (float *src, int src_w, int src_h, int src_c, int embedding_size, int cur_w, int cur_h, int cur_n, int cur_b, float *dst) |
| void | grad_contrastive_loss_negative (size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh) |
| void | grad_contrastive_loss_negative_f (size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size, int neg_max) |
| void | grad_contrastive_loss_positive (size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh) |
| void | grad_contrastive_loss_positive_f (size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size) |
| void | l2_cpu (int n, float *pred, float *truth, float *delta, float *error) |
| float | math_vector_length (float *A, unsigned int feature_size) |
| void | mean_cpu (float *x, int batch, int filters, int spatial, float *mean) |
| void | mean_delta_cpu (float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) |
| void | mul_cpu (int N, float *X, int INCX, float *Y, int INCY) |
| void | normalize_cpu (float *x, float *mean, float *variance, int batch, int filters, int spatial) |
| void | normalize_delta_cpu (float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) |
| float | P_constrastive (size_t i, size_t l, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *exp_cos_sim) |
| float | P_constrastive_f (size_t i, size_t l, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size) |
| float | P_constrastive_f_det (size_t il, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size) |
| float * | random_matrix (int rows, int cols) |
| void | reorg_cpu (float *x, int w, int h, int c, int batch, int stride, int forward, float *out) |
| void | scal_add_cpu (int N, float ALPHA, float BETA, float *X, int INCX) |
| void | scal_cpu (int N, float ALPHA, float *X, int INCX) |
| Scales a vector by a constant. Uses unrolled loops for increment equal to 1. | |
| void | scale_bias (float *output, float *scales, int batch, int n, int size) |
| void | shortcut_multilayer_cpu (int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) |
| void | smooth_l1_cpu (int n, float *pred, float *truth, float *delta, float *error) |
| void | softmax (float *input, int n, float temp, float *output, int stride) |
| void | softmax_cpu (float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) |
| void | softmax_x_ent_cpu (int n, float *pred, float *truth, float *delta, float *error) |
| void | test_blas () |
| int | test_gpu_blas () |
| void | upsample_cpu (float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) |
| void | variance_cpu (float *x, float *mean, int batch, int filters, int spatial, float *variance) |
| void | variance_delta_cpu (float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) |
| void | weighted_sum_cpu (float *a, float *b, float *s, int num, float *c) |
BLAS: "Basic Linear Algebra Subprograms".
| void add_bias | ( | float * | output, |
| float * | biases, | ||
| int | batch, | ||
| int | n, | ||
| int | size | ||
| ) |

| void axpy_cpu | ( | int | N, |
| float | ALPHA, | ||
| float * | X, | ||
| int | INCX, | ||
| float * | Y, | ||
| int | INCY | ||
| ) |
SAXPY constant times a vector plus a vector. Uses unrolled loops for increments equal to one.
| void backward_scale_cpu | ( | float * | x_norm, |
| float * | delta, | ||
| int | batch, | ||
| int | n, | ||
| int | size, | ||
| float * | scale_updates | ||
| ) |

| void backward_shortcut_multilayer_cpu | ( | int | size, |
| int | src_outputs, | ||
| int | batch, | ||
| int | n, | ||
| int * | outputs_of_layers, | ||
| float ** | layers_delta, | ||
| float * | delta_out, | ||
| float * | delta_in, | ||
| float * | weights, | ||
| float * | weight_updates, | ||
| int | nweights, | ||
| float * | in, | ||
| float ** | layers_output, | ||
| WEIGHTS_NORMALIZATION_T | weights_normalization | ||
| ) |


| int check_sim | ( | size_t | i, |
| size_t | j, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size | ||
| ) |
| void constrain_cpu | ( | int | size, |
| float | ALPHA, | ||
| float * | X | ||
| ) |
| void constrain_min_max_ongpu | ( | int | N, |
| float | MIN, | ||
| float | MAX, | ||
| float * | X, | ||
| int | INCX | ||
| ) |


| void constrain_ongpu | ( | int | N, |
| float | ALPHA, | ||
| float * | X, | ||
| int | INCX | ||
| ) |


| void copy_cpu | ( | int | N, |
| float * | X, | ||
| int | INCX, | ||
| float * | Y, | ||
| int | INCY | ||
| ) |
SCOPY copies a vector, x, to a vector, y. Uses unrolled loops for increments equal to 1.

| float cosine_similarity | ( | float * | A, |
| float * | B, | ||
| unsigned int | feature_size | ||
| ) |

| float dot_cpu | ( | int | N, |
| float * | X, | ||
| int | INCX, | ||
| float * | Y, | ||
| int | INCY | ||
| ) |
SDOT forms the dot product of two vectors. Uses unrolled loops for increments equal to one.
| void fill_cpu | ( | int | N, |
| float | ALPHA, | ||
| float * | X, | ||
| int | INCX | ||
| ) |

| float find_P_constrastive | ( | size_t | i, |
| size_t | j, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size | ||
| ) |

| float find_sim | ( | size_t | i, |
| size_t | j, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size | ||
| ) |


| void fix_nan_and_inf_cpu | ( | float * | input, |
| size_t | size | ||
| ) |
| void flatten | ( | float * | x, |
| int | size, | ||
| int | layers, | ||
| int | batch, | ||
| int | forward | ||
| ) |

| void get_embedding | ( | float * | src, |
| int | src_w, | ||
| int | src_h, | ||
| int | src_c, | ||
| int | embedding_size, | ||
| int | cur_w, | ||
| int | cur_h, | ||
| int | cur_n, | ||
| int | cur_b, | ||
| float * | dst | ||
| ) |

| void grad_contrastive_loss_negative | ( | size_t | i, |
| int * | labels, | ||
| size_t | num_of_samples, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| float * | cos_sim, | ||
| float * | p_constrastive, | ||
| float * | delta, | ||
| int | wh | ||
| ) |


| void grad_contrastive_loss_negative_f | ( | size_t | i, |
| int * | class_ids, | ||
| int * | labels, | ||
| size_t | num_of_samples, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| float * | delta, | ||
| int | wh, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size, | ||
| int | neg_max | ||
| ) |


| void grad_contrastive_loss_positive | ( | size_t | i, |
| int * | labels, | ||
| size_t | num_of_samples, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| float * | cos_sim, | ||
| float * | p_constrastive, | ||
| float * | delta, | ||
| int | wh | ||
| ) |


| void grad_contrastive_loss_positive_f | ( | size_t | i, |
| int * | class_ids, | ||
| int * | labels, | ||
| size_t | num_of_samples, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| float * | delta, | ||
| int | wh, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size | ||
| ) |


| void l2_cpu | ( | int | n, |
| float * | pred, | ||
| float * | truth, | ||
| float * | delta, | ||
| float * | error | ||
| ) |

| float math_vector_length | ( | float * | A, |
| unsigned int | feature_size | ||
| ) |

| void mean_cpu | ( | float * | x, |
| int | batch, | ||
| int | filters, | ||
| int | spatial, | ||
| float * | mean | ||
| ) |

| void mean_delta_cpu | ( | float * | delta, |
| float * | variance, | ||
| int | batch, | ||
| int | filters, | ||
| int | spatial, | ||
| float * | mean_delta | ||
| ) |

| void mul_cpu | ( | int | N, |
| float * | X, | ||
| int | INCX, | ||
| float * | Y, | ||
| int | INCY | ||
| ) |

| void normalize_cpu | ( | float * | x, |
| float * | mean, | ||
| float * | variance, | ||
| int | batch, | ||
| int | filters, | ||
| int | spatial | ||
| ) |

| void normalize_delta_cpu | ( | float * | x, |
| float * | mean, | ||
| float * | variance, | ||
| float * | mean_delta, | ||
| float * | variance_delta, | ||
| int | batch, | ||
| int | filters, | ||
| int | spatial, | ||
| float * | delta | ||
| ) |

| float P_constrastive | ( | size_t | i, |
| size_t | l, | ||
| int * | labels, | ||
| size_t | num_of_samples, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| float * | cos_sim, | ||
| float * | exp_cos_sim | ||
| ) |


| float P_constrastive_f | ( | size_t | i, |
| size_t | l, | ||
| int * | labels, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size | ||
| ) |


| float P_constrastive_f_det | ( | size_t | il, |
| int * | labels, | ||
| float ** | z, | ||
| unsigned int | feature_size, | ||
| float | temperature, | ||
| contrastive_params * | contrast_p, | ||
| int | contrast_p_size | ||
| ) |

| float * random_matrix | ( | int | rows, |
| int | cols | ||
| ) |
| void reorg_cpu | ( | float * | x, |
| int | w, | ||
| int | h, | ||
| int | c, | ||
| int | batch, | ||
| int | stride, | ||
| int | forward, | ||
| float * | out | ||
| ) |

| void scal_add_cpu | ( | int | N, |
| float | ALPHA, | ||
| float | BETA, | ||
| float * | X, | ||
| int | INCX | ||
| ) |

| void scal_cpu | ( | int | N, |
| float | ALPHA, | ||
| float * | X, | ||
| int | INCX | ||
| ) |
Scales a vector by a constant. Uses unrolled loops for increment equal to 1.

| void scale_bias | ( | float * | output, |
| float * | scales, | ||
| int | batch, | ||
| int | n, | ||
| int | size | ||
| ) |

| void shortcut_multilayer_cpu | ( | int | size, |
| int | src_outputs, | ||
| int | batch, | ||
| int | n, | ||
| int * | outputs_of_layers, | ||
| float ** | layers_output, | ||
| float * | out, | ||
| float * | in, | ||
| float * | weights, | ||
| int | nweights, | ||
| WEIGHTS_NORMALIZATION_T | weights_normalization | ||
| ) |


| void smooth_l1_cpu | ( | int | n, |
| float * | pred, | ||
| float * | truth, | ||
| float * | delta, | ||
| float * | error | ||
| ) |

| void softmax | ( | float * | input, |
| int | n, | ||
| float | temp, | ||
| float * | output, | ||
| int | stride | ||
| ) |

| void softmax_cpu | ( | float * | input, |
| int | n, | ||
| int | batch, | ||
| int | batch_offset, | ||
| int | groups, | ||
| int | group_offset, | ||
| int | stride, | ||
| float | temp, | ||
| float * | output | ||
| ) |


| void softmax_x_ent_cpu | ( | int | n, |
| float * | pred, | ||
| float * | truth, | ||
| float * | delta, | ||
| float * | error | ||
| ) |

| void test_blas | ( | ) |
| int test_gpu_blas | ( | ) |
| void upsample_cpu | ( | float * | in, |
| int | w, | ||
| int | h, | ||
| int | c, | ||
| int | batch, | ||
| int | stride, | ||
| int | forward, | ||
| float | scale, | ||
| float * | out | ||
| ) |

| void variance_cpu | ( | float * | x, |
| float * | mean, | ||
| int | batch, | ||
| int | filters, | ||
| int | spatial, | ||
| float * | variance | ||
| ) |

| void variance_delta_cpu | ( | float * | x, |
| float * | delta, | ||
| float * | mean, | ||
| float * | variance, | ||
| int | batch, | ||
| int | filters, | ||
| int | spatial, | ||
| float * | variance_delta | ||
| ) |

| void weighted_sum_cpu | ( | float * | a, |
| float * | b, | ||
| float * | s, | ||
| int | num, | ||
| float * | c | ||
| ) |