#include "darknet_layers.hpp"
|
| float * | a_avg_gpu |
| |
| int | absolute |
| |
| ACTIVATION | activation |
| |
| float * | activation_input |
| |
| float * | activation_input_gpu |
| |
| int | adam |
| |
| char * | align_bit_weights |
| |
| char * | align_bit_weights_gpu |
| |
| int | align_bit_weights_size |
| |
| float * | align_workspace_gpu |
| |
| int | align_workspace_size |
| |
| float | alpha |
| |
| float | angle |
| |
| int | antialiasing |
| |
| int | assisted_excitation |
| |
| int | avgpool |
| |
| float | B1 |
| |
| float | B2 |
| |
| int | background |
| |
| void(* | backward )(Layer &l, Darknet::NetworkState network_state) |
| |
| void(* | backward_gpu )(Layer &l, Darknet::NetworkState network_state) |
| |
| int | batch |
| |
| int | batch_normalize |
| |
| cudnnConvolutionBwdDataAlgo_t | bd_algo |
| |
| cudnnConvolutionBwdDataAlgo_t | bd_algo16 |
| |
| float | beta |
| |
| float | beta_nms |
| |
| cudnnConvolutionBwdFilterAlgo_t | bf_algo |
| |
| cudnnConvolutionBwdFilterAlgo_t | bf_algo16 |
| |
| float | bflops |
| |
| float * | bias_change_gpu |
| |
| float * | bias_m |
| |
| float * | bias_m_gpu |
| |
| int | bias_match |
| |
| float * | bias_updates |
| | biases loaded here by load_convolutional_weights() and load_connected_weights(), see n
|
| |
| float * | bias_updates_gpu |
| |
| float * | bias_v |
| |
| float * | bias_v_gpu |
| |
| float * | biases |
| |
| float * | biases_ema |
| |
| float * | biases_gpu |
| |
| float * | bin_conv_shortcut_in_gpu |
| |
| float * | bin_conv_shortcut_out_gpu |
| |
| uint32_t * | bin_re_packed_input |
| |
| int | binary |
| |
| float * | binary_input |
| |
| float * | binary_input_gpu |
| |
| float * | binary_weights |
| |
| float * | binary_weights_gpu |
| |
| int | bit_align |
| |
| float * | bottelneck_delta_gpu |
| |
| float * | bottelneck_hi_gpu |
| |
| int | bottleneck |
| |
| int | burnin_update |
| |
| int | c |
| | channels
|
| |
| float * | c_cpu |
| |
| float * | c_gpu |
| |
| float * | cell_cpu |
| |
| float * | cell_gpu |
| |
| int * | class_ids |
| |
| float | class_scale |
| |
| int | classes |
| |
| float * | classes_multipliers |
| |
| int | classfix |
| |
| float | clip |
| |
| float | cls_normalizer |
| |
| float * | col_image |
| |
| float * | col_image_gpu |
| |
| float * | combine_cpu_unused |
| |
| float * | combine_delta_cpu_unused |
| |
| float * | combine_delta_gpu |
| |
| float * | combine_gpu |
| |
| float * | concat |
| |
| float * | concat_delta |
| |
| float * | concat_delta_gpu |
| |
| float * | concat_gpu |
| |
| contrastive_params * | contrast_p_gpu |
| |
| int | contrastive_neg_max |
| |
| cudnnConvolutionDescriptor_t | convDesc |
| |
| float | coord_scale |
| |
| int | coordconv |
| |
| int | coords |
| |
| float * | cos_sim |
| |
| float * | cos_sim_gpu |
| |
| float * | cost |
| |
| COST_TYPE | cost_type |
| |
| int * | counts |
| |
| char * | cweights |
| |
| float * | dc_cpu |
| |
| float * | dc_gpu |
| |
| cudnnTensorDescriptor_t | ddstTensorDesc |
| |
| cudnnTensorDescriptor_t | ddstTensorDesc16 |
| |
| int | deform |
| |
| float * | delta |
| |
| float * | delta_gpu |
| |
| float | delta_normalizer |
| |
| int | delta_pinned |
| |
| int | detection |
| |
| int | dets_for_show |
| |
| int | dets_for_track |
| |
| float * | dh_cpu |
| |
| float * | dh_gpu |
| |
| int | dilation |
| |
| int | does_cost |
| |
| int | dont_update |
| |
| int | dontload |
| |
| int | dontloadscales |
| |
| int | dontsave |
| |
| float | dot |
| |
| float * | drop_blocks_scale |
| |
| float * | drop_blocks_scale_gpu |
| |
| int | dropblock |
| |
| int | dropblock_size_abs |
| |
| float | dropblock_size_rel |
| |
| cudnnTensorDescriptor_t | dsrcTensorDesc |
| |
| cudnnTensorDescriptor_t | dsrcTensorDesc16 |
| |
| cudnnTensorDescriptor_t | dstTensorDesc |
| |
| cudnnTensorDescriptor_t | dstTensorDesc16 |
| |
| cudnnFilterDescriptor_t | dweightDesc |
| |
| cudnnFilterDescriptor_t | dweightDesc16 |
| |
| int | dynamic_minibatch |
| |
| int | embedding_layer_id |
| |
| float * | embedding_output |
| |
| int | embedding_size |
| |
| float | eps |
| |
| float * | exp_cos_sim |
| |
| float | exposure |
| |
| int | extra |
| |
| float * | f_cpu |
| |
| float * | f_gpu |
| |
| int | flatten |
| |
| int | flip |
| |
| int | flipped |
| |
| int | focal_loss |
| |
| float | focus |
| |
| int | forced |
| |
| float * | forgot_delta |
| |
| float * | forgot_delta_gpu |
| |
| float * | forgot_state |
| |
| float * | forgot_state_gpu |
| |
| void(* | forward )(Layer &l, Darknet::NetworkState network_state) |
| |
| void(* | forward_gpu )(Layer &l, Darknet::NetworkState network_state) |
| |
| cudnnConvolutionFwdAlgo_t | fw_algo |
| |
| cudnnConvolutionFwdAlgo_t | fw_algo16 |
| |
| float * | g_cpu |
| |
| float * | g_gpu |
| |
| float * | gate_delta_gpu |
| |
| float * | gate_gpu |
| |
| int | grad_centr |
| |
| int | group_id |
| |
| int | groups |
| |
| float * | gt_gpu |
| |
| int | h |
| | height
|
| |
| float * | h_cpu |
| |
| float * | h_gpu |
| |
| float * | hh_cpu |
| |
| float * | hh_gpu |
| |
| int | hidden |
| |
| int | history_size |
| |
| float * | i_cpu |
| |
| float * | i_gpu |
| |
| float | ignore_thresh |
| |
| int | index |
| | layer number starting at zero ([net] does not count)
|
| |
| int * | indexes |
| |
| int * | indexes_gpu |
| |
| float * | input_antialiasing_gpu |
| |
| Layer * | input_gate_layer_unused |
| |
| Layer * | input_h_layer_unused |
| |
| Layer * | input_layer |
| |
| int * | input_layers |
| |
| Layer * | input_r_layer_unused |
| |
| Layer * | input_save_layer_unused |
| |
| int * | input_sizes |
| |
| int * | input_sizes_gpu |
| |
| Layer * | input_state_layer_unused |
| |
| Layer * | input_z_layer_unused |
| |
| int | inputs |
| |
| IOU_LOSS | iou_loss |
| |
| float | iou_normalizer |
| |
| float | iou_thresh |
| |
| IOU_LOSS | iou_thresh_kind |
| |
| float | jitter |
| |
| int | joint |
| |
| float | kappa |
| |
| int | keep_delta_gpu |
| |
| float | label_smooth_eps |
| |
| int * | labels |
| |
| float * | last_prev_cell_gpu |
| |
| float * | last_prev_state_gpu |
| |
| float ** | layers_delta |
| |
| float ** | layers_delta_gpu |
| |
| float ** | layers_output |
| |
| float ** | layers_output_gpu |
| |
| int | lda_align |
| |
| float | learning_rate_scale |
| |
| int | log |
| |
| float * | loss |
| |
| float * | loss_gpu |
| |
| ACTIVATION | lstm_activation |
| |
| float * | m |
| |
| float * | m_cbn_avg_gpu |
| |
| float * | m_gpu |
| |
| int * | map |
| |
| int * | mask |
| |
| float | mask_scale |
| |
| int | max_boxes |
| |
| float | max_delta |
| |
| int | maxpool_depth |
| |
| int | maxpool_zero_nonmax |
| |
| float * | mean |
| |
| float | mean_alpha |
| |
| float * | mean_arr |
| |
| float * | mean_arr_gpu |
| |
| float * | mean_delta |
| |
| float * | mean_delta_gpu |
| |
| float * | mean_gpu |
| |
| int | n |
| | number of anchors, masks (?), weights (?); for example, with YOLOv4-tiny this is set to 3
|
| |
| int | nbiases |
| | unused? Seems to be no references to this in the codebase.
|
| |
| int | new_coords |
| |
| int | new_lda |
| |
| NMS_KIND | nms_kind |
| |
| int | noadjust |
| |
| int | noloss |
| |
| float | noobject_scale |
| |
| cudnnTensorDescriptor_t | normDstTensorDesc |
| |
| cudnnTensorDescriptor_t | normDstTensorDescF16 |
| |
| float * | norms |
| |
| float * | norms_gpu |
| |
| cudnnTensorDescriptor_t | normTensorDesc |
| |
| int | numload |
| |
| int | nweights |
| | number of floats stored in weights
|
| |
| float * | o_cpu |
| |
| float * | o_gpu |
| |
| float | obj_normalizer |
| |
| float | object_scale |
| |
| int | objectness |
| |
| int | objectness_smooth |
| |
| int | onlyforward |
| |
| int | optimized_memory |
| |
| int | out_c |
| |
| int | out_channels |
| |
| int | out_h |
| |
| int | out_w |
| |
| float * | output |
| |
| float * | output_avg_gpu |
| |
| float * | output_gpu |
| |
| Layer * | output_layer |
| |
| int | output_pinned |
| |
| int | outputs |
| |
| float * | p_constrastive |
| |
| int | pad |
| |
| int | peephole |
| |
| cudnnPoolingDescriptor_t | poolingDesc |
| |
| float * | prev_cell_cpu |
| |
| float * | prev_cell_gpu |
| |
| float * | prev_state |
| |
| float * | prev_state_cpu |
| |
| float * | prev_state_gpu |
| |
| float | probability |
| |
| float * | r_cpu |
| |
| float * | r_gpu |
| |
| float * | rand |
| |
| float * | rand_gpu |
| |
| float | random |
| |
| float | ratio |
| |
| int | receptive_h |
| |
| int | receptive_h_scale |
| |
| int | receptive_w |
| |
| int | receptive_w_scale |
| |
| int | reorg |
| |
| int | rescore |
| |
| Layer * | reset_layer_unused |
| |
| float | resize |
| |
| float | reverse |
| |
| float * | rolling_mean |
| |
| float * | rolling_mean_gpu |
| |
| float * | rolling_variance |
| | rolling means loaded here by load_convolutional_weights() and load_connected_weights() when batch_normalize is set
|
| |
| float * | rolling_variance_gpu |
| |
| int | rotate |
| |
| float | saturation |
| |
| float * | save_delta_gpu |
| |
| float * | save_gpu |
| |
| float | scale |
| |
| float * | scale_change_gpu |
| |
| float * | scale_m |
| |
| float * | scale_m_gpu |
| |
| float * | scale_updates |
| | scales loaded here by load_convolutional_weights() when batch_normalize is set
|
| |
| float * | scale_updates_gpu |
| |
| float * | scale_v |
| |
| float * | scale_v_gpu |
| |
| int | scale_wh |
| |
| float | scale_x_y |
| |
| float * | scales |
| |
| float * | scales_ema |
| |
| float * | scales_gpu |
| |
| Layer * | self_layer |
| |
| Layer * | share_layer |
| |
| float | shift |
| |
| int | shortcut |
| |
| int | show_details |
| |
| int | side |
| |
| float | sim_thresh |
| |
| int | size |
| |
| float | smooth |
| |
| int | softmax |
| |
| Darknet::Tree * | softmax_tree |
| |
| int | spatial |
| |
| float * | spatial_mean |
| |
| int | sqrt |
| |
| float * | squared |
| |
| float * | squared_gpu |
| |
| cudnnTensorDescriptor_t | srcTensorDesc |
| |
| cudnnTensorDescriptor_t | srcTensorDesc16 |
| |
| float * | state |
| |
| int | state_constrain |
| |
| float * | state_delta |
| |
| float * | state_delta_gpu |
| |
| Layer * | state_gate_layer_unused |
| |
| float * | state_gpu |
| |
| Layer * | state_h_layer_unused |
| |
| Layer * | state_layer_unused |
| |
| Layer * | state_r_layer_unused |
| |
| Layer * | state_save_layer_unused |
| |
| Layer * | state_state_layer_unused |
| |
| Layer * | state_z_layer_unused |
| |
| int | steps |
| |
| int | stopbackward |
| |
| float * | stored_c_cpu |
| |
| float * | stored_c_gpu |
| |
| float * | stored_h_cpu |
| |
| float * | stored_h_gpu |
| |
| int | stream |
| |
| int | stretch |
| |
| int | stretch_sway |
| |
| int | stride |
| |
| int | stride_x |
| |
| int | stride_y |
| |
| float ** | sums |
| |
| int | sway |
| |
| int | t |
| |
| char * | t_bit_input |
| |
| int | tanh |
| |
| float * | temp2_cpu |
| |
| float * | temp2_gpu |
| |
| float * | temp3_cpu |
| |
| float * | temp3_gpu |
| |
| float * | temp_cpu |
| |
| float * | temp_gpu |
| |
| float | temperature |
| |
| float | thresh |
| |
| float | time_normalizer |
| |
| int | total |
| |
| float | track_ciou_norm |
| |
| int | track_history_size |
| |
| int | train |
| |
| int | train_only_bn |
| |
| float * | transposed_align_workspace_gpu |
| |
| int | truth |
| |
| int | truth_size |
| |
| float | truth_thresh |
| |
| int | truths |
| |
| Darknet::ELayerType | type |
| |
| float | uc_normalizer |
| |
| Layer * | uf |
| | used in lstm (update for forget gate?)
|
| |
| Layer * | ug |
| | used in lstm (update gradient?)
|
| |
| Layer * | uh_unused |
| |
| Layer * | ui |
| | used in lstm (update input gate?)
|
| |
| Layer * | uo |
| | used in lstm (update for output gate?)
|
| |
| void(* | update )(Layer &l, int, float, float, float) |
| |
| void(* | update_gpu )(Layer &l, int, float, float, float, float) |
| |
| Layer * | update_layer_unused |
| |
| Layer * | ur_unused |
| |
| int | use_bin_output |
| |
| Layer * | uz_unused |
| |
| float * | v |
| |
| float * | v_cbn_avg_gpu |
| |
| float * | v_gpu |
| |
| float * | variance |
| |
| float * | variance_delta |
| |
| float * | variance_delta_gpu |
| |
| float * | variance_gpu |
| |
| Layer * | vf_unused |
| |
| Layer * | vi_unused |
| |
| Layer * | vo_unused |
| |
| int | w |
| | width
|
| |
| int | wait_stream_id |
| |
| float * | weight_change_gpu |
| |
| float * | weight_deform_gpu |
| |
| float * | weight_updates |
| | weights loaded here by load_convolutional_weights(), load_connected_weights(), and load_shortcut_weights()
|
| |
| float * | weight_updates_gpu |
| |
| float * | weight_updates_gpu16 |
| |
| cudnnFilterDescriptor_t | weightDesc |
| |
| cudnnFilterDescriptor_t | weightDesc16 |
| |
| float * | weights |
| |
| float * | weights_ema |
| |
| float * | weights_gpu |
| |
| float * | weights_gpu16 |
| |
| WEIGHTS_NORMALIZATION_T | weights_normalization |
| |
| WEIGHTS_TYPE_T | weights_type |
| |
| Layer * | wf |
| | used in lstm (weights for forget gate?)
|
| |
| Layer * | wg |
| | used in lstm (weight gradient?)
|
| |
| Layer * | wh_unused |
| |
| Layer * | wi |
| | used in lstm (weight for input connections?)
|
| |
| Layer * | wo |
| | used in lstm (weights for output forget gate?)
|
| |
| size_t | workspace_size |
| |
| Layer * | wr_unused |
| |
| Layer * | wz_unused |
| |
| float * | x |
| | rolling variance loaded here by load_convolutional_weights() and load_connected_weights() when batch_normalize is set
|
| |
| float * | x_gpu |
| |
| float * | x_norm |
| |
| float * | x_norm_gpu |
| |
| int | xnor |
| |
| YOLO_POINT | yolo_point |
| |
| float * | z_cpu |
| |
| float * | z_gpu |
| |
◆ a_avg_gpu
| float* Darknet::Layer::a_avg_gpu |
◆ absolute
| int Darknet::Layer::absolute |
◆ activation
◆ activation_input
| float* Darknet::Layer::activation_input |
◆ activation_input_gpu
| float* Darknet::Layer::activation_input_gpu |
◆ adam
◆ align_bit_weights
| char* Darknet::Layer::align_bit_weights |
◆ align_bit_weights_gpu
| char* Darknet::Layer::align_bit_weights_gpu |
◆ align_bit_weights_size
| int Darknet::Layer::align_bit_weights_size |
◆ align_workspace_gpu
| float* Darknet::Layer::align_workspace_gpu |
◆ align_workspace_size
| int Darknet::Layer::align_workspace_size |
◆ alpha
| float Darknet::Layer::alpha |
◆ angle
| float Darknet::Layer::angle |
◆ antialiasing
| int Darknet::Layer::antialiasing |
◆ assisted_excitation
| int Darknet::Layer::assisted_excitation |
◆ avgpool
| int Darknet::Layer::avgpool |
◆ B1
◆ B2
◆ background
| int Darknet::Layer::background |
◆ backward
◆ backward_gpu
◆ batch
| int Darknet::Layer::batch |
◆ batch_normalize
| int Darknet::Layer::batch_normalize |
◆ bd_algo
| cudnnConvolutionBwdDataAlgo_t Darknet::Layer::bd_algo |
◆ bd_algo16
| cudnnConvolutionBwdDataAlgo_t Darknet::Layer::bd_algo16 |
◆ beta
| float Darknet::Layer::beta |
◆ beta_nms
| float Darknet::Layer::beta_nms |
◆ bf_algo
| cudnnConvolutionBwdFilterAlgo_t Darknet::Layer::bf_algo |
◆ bf_algo16
| cudnnConvolutionBwdFilterAlgo_t Darknet::Layer::bf_algo16 |
◆ bflops
| float Darknet::Layer::bflops |
◆ bias_change_gpu
| float* Darknet::Layer::bias_change_gpu |
◆ bias_m
| float* Darknet::Layer::bias_m |
◆ bias_m_gpu
| float* Darknet::Layer::bias_m_gpu |
- Todo:
- V5: possibly unused?
◆ bias_match
| int Darknet::Layer::bias_match |
◆ bias_updates
| float* Darknet::Layer::bias_updates |
◆ bias_updates_gpu
| float* Darknet::Layer::bias_updates_gpu |
◆ bias_v
| float* Darknet::Layer::bias_v |
◆ bias_v_gpu
| float* Darknet::Layer::bias_v_gpu |
- Todo:
- V5: possibly unused?
◆ biases
| float* Darknet::Layer::biases |
◆ biases_ema
| float* Darknet::Layer::biases_ema |
◆ biases_gpu
| float* Darknet::Layer::biases_gpu |
◆ bin_conv_shortcut_in_gpu
| float* Darknet::Layer::bin_conv_shortcut_in_gpu |
- Todo:
- V5: possibly unused?
◆ bin_conv_shortcut_out_gpu
| float* Darknet::Layer::bin_conv_shortcut_out_gpu |
- Todo:
- V5: possibly unused?
◆ bin_re_packed_input
| uint32_t* Darknet::Layer::bin_re_packed_input |
◆ binary
| int Darknet::Layer::binary |
◆ binary_input
| float* Darknet::Layer::binary_input |
◆ binary_input_gpu
| float* Darknet::Layer::binary_input_gpu |
◆ binary_weights
| float* Darknet::Layer::binary_weights |
◆ binary_weights_gpu
| float* Darknet::Layer::binary_weights_gpu |
◆ bit_align
| int Darknet::Layer::bit_align |
◆ bottelneck_delta_gpu
| float* Darknet::Layer::bottelneck_delta_gpu |
◆ bottelneck_hi_gpu
| float* Darknet::Layer::bottelneck_hi_gpu |
◆ bottleneck
| int Darknet::Layer::bottleneck |
◆ burnin_update
| int Darknet::Layer::burnin_update |
◆ c_cpu
| float* Darknet::Layer::c_cpu |
◆ c_gpu
| float* Darknet::Layer::c_gpu |
◆ cell_cpu
| float* Darknet::Layer::cell_cpu |
◆ cell_gpu
| float* Darknet::Layer::cell_gpu |
◆ class_ids
| int* Darknet::Layer::class_ids |
◆ class_scale
| float Darknet::Layer::class_scale |
◆ classes
| int Darknet::Layer::classes |
◆ classes_multipliers
| float* Darknet::Layer::classes_multipliers |
◆ classfix
| int Darknet::Layer::classfix |
◆ clip
| float Darknet::Layer::clip |
◆ cls_normalizer
| float Darknet::Layer::cls_normalizer |
◆ col_image
| float* Darknet::Layer::col_image |
◆ col_image_gpu
| float* Darknet::Layer::col_image_gpu |
◆ combine_cpu_unused
| float* Darknet::Layer::combine_cpu_unused |
◆ combine_delta_cpu_unused
| float* Darknet::Layer::combine_delta_cpu_unused |
◆ combine_delta_gpu
| float* Darknet::Layer::combine_delta_gpu |
◆ combine_gpu
| float* Darknet::Layer::combine_gpu |
◆ concat
| float* Darknet::Layer::concat |
◆ concat_delta
| float* Darknet::Layer::concat_delta |
◆ concat_delta_gpu
| float* Darknet::Layer::concat_delta_gpu |
◆ concat_gpu
| float* Darknet::Layer::concat_gpu |
◆ contrast_p_gpu
◆ contrastive_neg_max
| int Darknet::Layer::contrastive_neg_max |
- Todo:
- V5: possibly unused?
◆ convDesc
| cudnnConvolutionDescriptor_t Darknet::Layer::convDesc |
◆ coord_scale
| float Darknet::Layer::coord_scale |
◆ coordconv
| int Darknet::Layer::coordconv |
◆ coords
| int Darknet::Layer::coords |
◆ cos_sim
| float* Darknet::Layer::cos_sim |
◆ cos_sim_gpu
| float* Darknet::Layer::cos_sim_gpu |
◆ cost
| float* Darknet::Layer::cost |
◆ cost_type
◆ counts
| int* Darknet::Layer::counts |
◆ cweights
| char* Darknet::Layer::cweights |
- Todo:
- V5: possibly unused?
◆ dc_cpu
| float* Darknet::Layer::dc_cpu |
◆ dc_gpu
| float* Darknet::Layer::dc_gpu |
◆ ddstTensorDesc
| cudnnTensorDescriptor_t Darknet::Layer::ddstTensorDesc |
◆ ddstTensorDesc16
| cudnnTensorDescriptor_t Darknet::Layer::ddstTensorDesc16 |
◆ deform
| int Darknet::Layer::deform |
◆ delta
| float* Darknet::Layer::delta |
◆ delta_gpu
| float* Darknet::Layer::delta_gpu |
◆ delta_normalizer
| float Darknet::Layer::delta_normalizer |
◆ delta_pinned
| int Darknet::Layer::delta_pinned |
◆ detection
| int Darknet::Layer::detection |
◆ dets_for_show
| int Darknet::Layer::dets_for_show |
◆ dets_for_track
| int Darknet::Layer::dets_for_track |
◆ dh_cpu
| float* Darknet::Layer::dh_cpu |
◆ dh_gpu
| float* Darknet::Layer::dh_gpu |
◆ dilation
| int Darknet::Layer::dilation |
◆ does_cost
| int Darknet::Layer::does_cost |
◆ dont_update
| int Darknet::Layer::dont_update |
◆ dontload
| int Darknet::Layer::dontload |
◆ dontloadscales
| int Darknet::Layer::dontloadscales |
◆ dontsave
| int Darknet::Layer::dontsave |
◆ dot
| float Darknet::Layer::dot |
◆ drop_blocks_scale
| float* Darknet::Layer::drop_blocks_scale |
◆ drop_blocks_scale_gpu
| float* Darknet::Layer::drop_blocks_scale_gpu |
◆ dropblock
| int Darknet::Layer::dropblock |
◆ dropblock_size_abs
| int Darknet::Layer::dropblock_size_abs |
◆ dropblock_size_rel
| float Darknet::Layer::dropblock_size_rel |
◆ dsrcTensorDesc
| cudnnTensorDescriptor_t Darknet::Layer::dsrcTensorDesc |
◆ dsrcTensorDesc16
| cudnnTensorDescriptor_t Darknet::Layer::dsrcTensorDesc16 |
◆ dstTensorDesc
| cudnnTensorDescriptor_t Darknet::Layer::dstTensorDesc |
◆ dstTensorDesc16
| cudnnTensorDescriptor_t Darknet::Layer::dstTensorDesc16 |
◆ dweightDesc
| cudnnFilterDescriptor_t Darknet::Layer::dweightDesc |
◆ dweightDesc16
| cudnnFilterDescriptor_t Darknet::Layer::dweightDesc16 |
◆ dynamic_minibatch
| int Darknet::Layer::dynamic_minibatch |
◆ embedding_layer_id
| int Darknet::Layer::embedding_layer_id |
◆ embedding_output
| float* Darknet::Layer::embedding_output |
◆ embedding_size
| int Darknet::Layer::embedding_size |
◆ eps
| float Darknet::Layer::eps |
◆ exp_cos_sim
| float* Darknet::Layer::exp_cos_sim |
◆ exposure
| float Darknet::Layer::exposure |
◆ extra
| int Darknet::Layer::extra |
◆ f_cpu
| float* Darknet::Layer::f_cpu |
◆ f_gpu
| float* Darknet::Layer::f_gpu |
◆ flatten
| int Darknet::Layer::flatten |
◆ flip
◆ flipped
| int Darknet::Layer::flipped |
◆ focal_loss
| int Darknet::Layer::focal_loss |
◆ focus
| float Darknet::Layer::focus |
◆ forced
| int Darknet::Layer::forced |
◆ forgot_delta
| float* Darknet::Layer::forgot_delta |
◆ forgot_delta_gpu
| float* Darknet::Layer::forgot_delta_gpu |
- Todo:
- V5: possibly unused?
◆ forgot_state
| float* Darknet::Layer::forgot_state |
◆ forgot_state_gpu
| float* Darknet::Layer::forgot_state_gpu |
- Todo:
- V5: possibly unused?
◆ forward
◆ forward_gpu
◆ fw_algo
| cudnnConvolutionFwdAlgo_t Darknet::Layer::fw_algo |
◆ fw_algo16
| cudnnConvolutionFwdAlgo_t Darknet::Layer::fw_algo16 |
◆ g_cpu
| float* Darknet::Layer::g_cpu |
◆ g_gpu
| float* Darknet::Layer::g_gpu |
◆ gate_delta_gpu
| float* Darknet::Layer::gate_delta_gpu |
- Todo:
- V5: possibly unused?
◆ gate_gpu
| float* Darknet::Layer::gate_gpu |
- Todo:
- V5: possibly unused?
◆ grad_centr
| int Darknet::Layer::grad_centr |
◆ group_id
| int Darknet::Layer::group_id |
◆ groups
| int Darknet::Layer::groups |
◆ gt_gpu
| float* Darknet::Layer::gt_gpu |
◆ h_cpu
| float* Darknet::Layer::h_cpu |
◆ h_gpu
| float* Darknet::Layer::h_gpu |
◆ hh_cpu
| float* Darknet::Layer::hh_cpu |
◆ hh_gpu
| float* Darknet::Layer::hh_gpu |
- Todo:
- V5: possibly unused?
◆ hidden
| int Darknet::Layer::hidden |
◆ history_size
| int Darknet::Layer::history_size |
◆ i_cpu
| float* Darknet::Layer::i_cpu |
◆ i_gpu
| float* Darknet::Layer::i_gpu |
◆ ignore_thresh
| float Darknet::Layer::ignore_thresh |
◆ index
| int Darknet::Layer::index |
layer number starting at zero ([net] does not count)
◆ indexes
| int* Darknet::Layer::indexes |
◆ indexes_gpu
| int* Darknet::Layer::indexes_gpu |
◆ input_antialiasing_gpu
| float* Darknet::Layer::input_antialiasing_gpu |
◆ input_gate_layer_unused
| Layer* Darknet::Layer::input_gate_layer_unused |
◆ input_h_layer_unused
| Layer* Darknet::Layer::input_h_layer_unused |
◆ input_layer
| Layer* Darknet::Layer::input_layer |
◆ input_layers
| int* Darknet::Layer::input_layers |
◆ input_r_layer_unused
| Layer* Darknet::Layer::input_r_layer_unused |
◆ input_save_layer_unused
| Layer* Darknet::Layer::input_save_layer_unused |
◆ input_sizes
| int* Darknet::Layer::input_sizes |
◆ input_sizes_gpu
| int* Darknet::Layer::input_sizes_gpu |
◆ input_state_layer_unused
| Layer* Darknet::Layer::input_state_layer_unused |
◆ input_z_layer_unused
| Layer* Darknet::Layer::input_z_layer_unused |
◆ inputs
| int Darknet::Layer::inputs |
◆ iou_loss
◆ iou_normalizer
| float Darknet::Layer::iou_normalizer |
◆ iou_thresh
| float Darknet::Layer::iou_thresh |
◆ iou_thresh_kind
| IOU_LOSS Darknet::Layer::iou_thresh_kind |
◆ jitter
| float Darknet::Layer::jitter |
◆ joint
| int Darknet::Layer::joint |
◆ kappa
| float Darknet::Layer::kappa |
◆ keep_delta_gpu
| int Darknet::Layer::keep_delta_gpu |
◆ label_smooth_eps
| float Darknet::Layer::label_smooth_eps |
◆ labels
| int* Darknet::Layer::labels |
◆ last_prev_cell_gpu
| float* Darknet::Layer::last_prev_cell_gpu |
◆ last_prev_state_gpu
| float* Darknet::Layer::last_prev_state_gpu |
◆ layers_delta
| float** Darknet::Layer::layers_delta |
◆ layers_delta_gpu
| float** Darknet::Layer::layers_delta_gpu |
◆ layers_output
| float** Darknet::Layer::layers_output |
◆ layers_output_gpu
| float** Darknet::Layer::layers_output_gpu |
◆ lda_align
| int Darknet::Layer::lda_align |
◆ learning_rate_scale
| float Darknet::Layer::learning_rate_scale |
◆ log
◆ loss
| float* Darknet::Layer::loss |
◆ loss_gpu
| float* Darknet::Layer::loss_gpu |
◆ lstm_activation
◆ m_cbn_avg_gpu
| float* Darknet::Layer::m_cbn_avg_gpu |
- Todo:
- V5: possibly unused?
◆ m_gpu
| float* Darknet::Layer::m_gpu |
◆ map
◆ mask
| int* Darknet::Layer::mask |
◆ mask_scale
| float Darknet::Layer::mask_scale |
◆ max_boxes
| int Darknet::Layer::max_boxes |
◆ max_delta
| float Darknet::Layer::max_delta |
◆ maxpool_depth
| int Darknet::Layer::maxpool_depth |
◆ maxpool_zero_nonmax
| int Darknet::Layer::maxpool_zero_nonmax |
◆ mean
| float* Darknet::Layer::mean |
◆ mean_alpha
| float Darknet::Layer::mean_alpha |
◆ mean_arr
| float* Darknet::Layer::mean_arr |
◆ mean_arr_gpu
| float* Darknet::Layer::mean_arr_gpu |
◆ mean_delta
| float* Darknet::Layer::mean_delta |
◆ mean_delta_gpu
| float* Darknet::Layer::mean_delta_gpu |
◆ mean_gpu
| float* Darknet::Layer::mean_gpu |
number of anchors, masks (?), weights (?); for example, with YOLOv4-tiny this is set to 3
◆ nbiases
| int Darknet::Layer::nbiases |
unused? Seems to be no references to this in the codebase.
◆ new_coords
| int Darknet::Layer::new_coords |
◆ new_lda
| int Darknet::Layer::new_lda |
◆ nms_kind
◆ noadjust
| int Darknet::Layer::noadjust |
◆ noloss
| int Darknet::Layer::noloss |
◆ noobject_scale
| float Darknet::Layer::noobject_scale |
◆ normDstTensorDesc
| cudnnTensorDescriptor_t Darknet::Layer::normDstTensorDesc |
◆ normDstTensorDescF16
| cudnnTensorDescriptor_t Darknet::Layer::normDstTensorDescF16 |
◆ norms
| float* Darknet::Layer::norms |
◆ norms_gpu
| float* Darknet::Layer::norms_gpu |
◆ normTensorDesc
| cudnnTensorDescriptor_t Darknet::Layer::normTensorDesc |
◆ numload
| int Darknet::Layer::numload |
◆ nweights
| int Darknet::Layer::nweights |
◆ o_cpu
| float* Darknet::Layer::o_cpu |
◆ o_gpu
| float* Darknet::Layer::o_gpu |
◆ obj_normalizer
| float Darknet::Layer::obj_normalizer |
◆ object_scale
| float Darknet::Layer::object_scale |
◆ objectness
| int Darknet::Layer::objectness |
◆ objectness_smooth
| int Darknet::Layer::objectness_smooth |
◆ onlyforward
| int Darknet::Layer::onlyforward |
◆ optimized_memory
| int Darknet::Layer::optimized_memory |
◆ out_c
| int Darknet::Layer::out_c |
◆ out_channels
| int Darknet::Layer::out_channels |
◆ out_h
| int Darknet::Layer::out_h |
◆ out_w
| int Darknet::Layer::out_w |
◆ output
| float* Darknet::Layer::output |
◆ output_avg_gpu
| float* Darknet::Layer::output_avg_gpu |
◆ output_gpu
| float* Darknet::Layer::output_gpu |
◆ output_layer
| Layer* Darknet::Layer::output_layer |
◆ output_pinned
| int Darknet::Layer::output_pinned |
◆ outputs
| int Darknet::Layer::outputs |
◆ p_constrastive
| float* Darknet::Layer::p_constrastive |
◆ pad
◆ peephole
| int Darknet::Layer::peephole |
◆ poolingDesc
| cudnnPoolingDescriptor_t Darknet::Layer::poolingDesc |
◆ prev_cell_cpu
| float* Darknet::Layer::prev_cell_cpu |
◆ prev_cell_gpu
| float* Darknet::Layer::prev_cell_gpu |
◆ prev_state
| float* Darknet::Layer::prev_state |
◆ prev_state_cpu
| float* Darknet::Layer::prev_state_cpu |
◆ prev_state_gpu
| float* Darknet::Layer::prev_state_gpu |
◆ probability
| float Darknet::Layer::probability |
◆ r_cpu
| float* Darknet::Layer::r_cpu |
◆ r_gpu
| float* Darknet::Layer::r_gpu |
◆ rand
| float* Darknet::Layer::rand |
◆ rand_gpu
| float* Darknet::Layer::rand_gpu |
◆ random
| float Darknet::Layer::random |
◆ ratio
| float Darknet::Layer::ratio |
◆ receptive_h
| int Darknet::Layer::receptive_h |
◆ receptive_h_scale
| int Darknet::Layer::receptive_h_scale |
◆ receptive_w
| int Darknet::Layer::receptive_w |
◆ receptive_w_scale
| int Darknet::Layer::receptive_w_scale |
◆ reorg
| int Darknet::Layer::reorg |
◆ rescore
| int Darknet::Layer::rescore |
◆ reset_layer_unused
| Layer* Darknet::Layer::reset_layer_unused |
◆ resize
| float Darknet::Layer::resize |
◆ reverse
| float Darknet::Layer::reverse |
◆ rolling_mean
| float* Darknet::Layer::rolling_mean |
◆ rolling_mean_gpu
| float* Darknet::Layer::rolling_mean_gpu |
◆ rolling_variance
| float* Darknet::Layer::rolling_variance |
◆ rolling_variance_gpu
| float* Darknet::Layer::rolling_variance_gpu |
◆ rotate
| int Darknet::Layer::rotate |
◆ saturation
| float Darknet::Layer::saturation |
◆ save_delta_gpu
| float* Darknet::Layer::save_delta_gpu |
◆ save_gpu
| float* Darknet::Layer::save_gpu |
- Todo:
- V5: possibly unused?
◆ scale
| float Darknet::Layer::scale |
◆ scale_change_gpu
| float* Darknet::Layer::scale_change_gpu |
◆ scale_m
| float* Darknet::Layer::scale_m |
◆ scale_m_gpu
| float* Darknet::Layer::scale_m_gpu |
- Todo:
- V5: possibly unused?
◆ scale_updates
| float* Darknet::Layer::scale_updates |
◆ scale_updates_gpu
| float* Darknet::Layer::scale_updates_gpu |
◆ scale_v
| float* Darknet::Layer::scale_v |
◆ scale_v_gpu
| float* Darknet::Layer::scale_v_gpu |
- Todo:
- V5: possibly unused?
◆ scale_wh
| int Darknet::Layer::scale_wh |
◆ scale_x_y
| float Darknet::Layer::scale_x_y |
◆ scales
| float* Darknet::Layer::scales |
◆ scales_ema
| float* Darknet::Layer::scales_ema |
◆ scales_gpu
| float* Darknet::Layer::scales_gpu |
◆ self_layer
| Layer* Darknet::Layer::self_layer |
◆ share_layer
| Layer* Darknet::Layer::share_layer |
◆ shift
| float Darknet::Layer::shift |
◆ shortcut
| int Darknet::Layer::shortcut |
◆ show_details
| int Darknet::Layer::show_details |
◆ side
◆ sim_thresh
| float Darknet::Layer::sim_thresh |
◆ size
◆ smooth
| float Darknet::Layer::smooth |
◆ softmax
| int Darknet::Layer::softmax |
◆ softmax_tree
◆ spatial
| int Darknet::Layer::spatial |
◆ spatial_mean
| float* Darknet::Layer::spatial_mean |
◆ sqrt
◆ squared
| float* Darknet::Layer::squared |
◆ squared_gpu
| float* Darknet::Layer::squared_gpu |
◆ srcTensorDesc
| cudnnTensorDescriptor_t Darknet::Layer::srcTensorDesc |
◆ srcTensorDesc16
| cudnnTensorDescriptor_t Darknet::Layer::srcTensorDesc16 |
◆ state
| float* Darknet::Layer::state |
◆ state_constrain
| int Darknet::Layer::state_constrain |
◆ state_delta
| float* Darknet::Layer::state_delta |
- Todo:
- V5: possibly unused?
◆ state_delta_gpu
| float* Darknet::Layer::state_delta_gpu |
- Todo:
- V5: possibly unused?
◆ state_gate_layer_unused
| Layer* Darknet::Layer::state_gate_layer_unused |
◆ state_gpu
| float* Darknet::Layer::state_gpu |
◆ state_h_layer_unused
| Layer* Darknet::Layer::state_h_layer_unused |
◆ state_layer_unused
| Layer* Darknet::Layer::state_layer_unused |
◆ state_r_layer_unused
| Layer* Darknet::Layer::state_r_layer_unused |
◆ state_save_layer_unused
| Layer* Darknet::Layer::state_save_layer_unused |
◆ state_state_layer_unused
| Layer* Darknet::Layer::state_state_layer_unused |
◆ state_z_layer_unused
| Layer* Darknet::Layer::state_z_layer_unused |
◆ steps
| int Darknet::Layer::steps |
◆ stopbackward
| int Darknet::Layer::stopbackward |
◆ stored_c_cpu
| float* Darknet::Layer::stored_c_cpu |
◆ stored_c_gpu
| float* Darknet::Layer::stored_c_gpu |
- Todo:
- V5: possibly unused?
◆ stored_h_cpu
| float* Darknet::Layer::stored_h_cpu |
◆ stored_h_gpu
| float* Darknet::Layer::stored_h_gpu |
◆ stream
| int Darknet::Layer::stream |
◆ stretch
| int Darknet::Layer::stretch |
◆ stretch_sway
| int Darknet::Layer::stretch_sway |
◆ stride
| int Darknet::Layer::stride |
◆ stride_x
| int Darknet::Layer::stride_x |
◆ stride_y
| int Darknet::Layer::stride_y |
◆ sums
| float** Darknet::Layer::sums |
◆ sway
◆ t_bit_input
| char* Darknet::Layer::t_bit_input |
◆ tanh
◆ temp2_cpu
| float* Darknet::Layer::temp2_cpu |
◆ temp2_gpu
| float* Darknet::Layer::temp2_gpu |
◆ temp3_cpu
| float* Darknet::Layer::temp3_cpu |
◆ temp3_gpu
| float* Darknet::Layer::temp3_gpu |
◆ temp_cpu
| float* Darknet::Layer::temp_cpu |
◆ temp_gpu
| float* Darknet::Layer::temp_gpu |
◆ temperature
| float Darknet::Layer::temperature |
◆ thresh
| float Darknet::Layer::thresh |
◆ time_normalizer
| float Darknet::Layer::time_normalizer |
◆ total
| int Darknet::Layer::total |
◆ track_ciou_norm
| float Darknet::Layer::track_ciou_norm |
◆ track_history_size
| int Darknet::Layer::track_history_size |
◆ train
| int Darknet::Layer::train |
◆ train_only_bn
| int Darknet::Layer::train_only_bn |
◆ transposed_align_workspace_gpu
| float* Darknet::Layer::transposed_align_workspace_gpu |
◆ truth
| int Darknet::Layer::truth |
◆ truth_size
| int Darknet::Layer::truth_size |
◆ truth_thresh
| float Darknet::Layer::truth_thresh |
◆ truths
| int Darknet::Layer::truths |
◆ type
◆ uc_normalizer
| float Darknet::Layer::uc_normalizer |
◆ uf
| Layer* Darknet::Layer::uf |
used in lstm (update for forget gate?)
◆ ug
| Layer* Darknet::Layer::ug |
used in lstm (update gradient?)
◆ uh_unused
| Layer* Darknet::Layer::uh_unused |
◆ ui
| Layer* Darknet::Layer::ui |
used in lstm (update input gate?)
◆ uo
| Layer* Darknet::Layer::uo |
used in lstm (update for output gate?)
◆ update
| void(* Darknet::Layer::update) (Layer &l, int, float, float, float) |
◆ update_gpu
| void(* Darknet::Layer::update_gpu) (Layer &l, int, float, float, float, float) |
◆ update_layer_unused
| Layer* Darknet::Layer::update_layer_unused |
◆ ur_unused
| Layer* Darknet::Layer::ur_unused |
◆ use_bin_output
| int Darknet::Layer::use_bin_output |
◆ uz_unused
| Layer* Darknet::Layer::uz_unused |
◆ v_cbn_avg_gpu
| float* Darknet::Layer::v_cbn_avg_gpu |
- Todo:
- V5: possibly unused?
◆ v_gpu
| float* Darknet::Layer::v_gpu |
◆ variance
| float* Darknet::Layer::variance |
◆ variance_delta
| float* Darknet::Layer::variance_delta |
◆ variance_delta_gpu
| float* Darknet::Layer::variance_delta_gpu |
◆ variance_gpu
| float* Darknet::Layer::variance_gpu |
◆ vf_unused
| Layer* Darknet::Layer::vf_unused |
◆ vi_unused
| Layer* Darknet::Layer::vi_unused |
◆ vo_unused
| Layer* Darknet::Layer::vo_unused |
◆ wait_stream_id
| int Darknet::Layer::wait_stream_id |
◆ weight_change_gpu
| float* Darknet::Layer::weight_change_gpu |
◆ weight_deform_gpu
| float* Darknet::Layer::weight_deform_gpu |
◆ weight_updates
| float* Darknet::Layer::weight_updates |
◆ weight_updates_gpu
| float* Darknet::Layer::weight_updates_gpu |
◆ weight_updates_gpu16
| float* Darknet::Layer::weight_updates_gpu16 |
◆ weightDesc
| cudnnFilterDescriptor_t Darknet::Layer::weightDesc |
◆ weightDesc16
| cudnnFilterDescriptor_t Darknet::Layer::weightDesc16 |
◆ weights
| float* Darknet::Layer::weights |
◆ weights_ema
| float* Darknet::Layer::weights_ema |
◆ weights_gpu
| float* Darknet::Layer::weights_gpu |
◆ weights_gpu16
| float* Darknet::Layer::weights_gpu16 |
◆ weights_normalization
◆ weights_type
◆ wf
| Layer* Darknet::Layer::wf |
used in lstm (weights for forget gate?)
◆ wg
| Layer* Darknet::Layer::wg |
used in lstm (weight gradient?)
◆ wh_unused
| Layer* Darknet::Layer::wh_unused |
◆ wi
| Layer* Darknet::Layer::wi |
used in lstm (weight for input connections?)
◆ wo
| Layer* Darknet::Layer::wo |
used in lstm (weights for output forget gate?)
◆ workspace_size
| size_t Darknet::Layer::workspace_size |
◆ wr_unused
| Layer* Darknet::Layer::wr_unused |
◆ wz_unused
| Layer* Darknet::Layer::wz_unused |
◆ x_gpu
| float* Darknet::Layer::x_gpu |
◆ x_norm
| float* Darknet::Layer::x_norm |
◆ x_norm_gpu
| float* Darknet::Layer::x_norm_gpu |
◆ xnor
◆ yolo_point
◆ z_cpu
| float* Darknet::Layer::z_cpu |
◆ z_gpu
| float* Darknet::Layer::z_gpu |
The documentation for this struct was generated from the following file: