

Functions | |
| void | add_bias (float *output, float *biases, int batch, int n, int size) |
| void | assisted_excitation_forward (Darknet::Layer &l, Darknet::NetworkState state) |
| void | assisted_excitation_forward_gpu (Darknet::Layer &l, Darknet::NetworkState state) |
| void | backward_bias (float *bias_updates, float *delta, int batch, int n, int size) |
| void | backward_convolutional_layer (Darknet::Layer &l, Darknet::NetworkState state) |
| void | binarize_weights (float *weights, int n, int size, float *binary) |
| void | binarize_weights2 (float *weights, int n, int size, char *binary, float *scales) |
| void | binary_align_weights (Darknet::Layer *l) |
| int | convolutional_out_height (const Darknet::Layer &l) |
| int | convolutional_out_width (const Darknet::Layer &l) |
| void | denormalize_convolutional_layer (Darknet::Layer &l) |
| void | forward_convolutional_layer (Darknet::Layer &l, Darknet::NetworkState state) |
| void | free_convolutional_batchnorm (Darknet::Layer *l) |
| Darknet::Image | get_convolutional_delta (const Darknet::Layer &l) |
| Darknet::Image | get_convolutional_image (const Darknet::Layer &l) |
| Darknet::Image | get_convolutional_weight (const Darknet::Layer &l, int i) |
| size_t | get_convolutional_workspace_size (const Darknet::Layer &l) |
| Darknet::Layer | make_convolutional_layer (int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, Darknet::Layer *share_layer, int assisted_excitation, int deform, int train) |
| void | rescale_weights (Darknet::Layer &l, float scale, float trans) |
| void | resize_convolutional_layer (Darknet::Layer *l, int w, int h) |
| void | rgbgr_weights (const Darknet::Layer &l) |
| void | set_specified_workspace_limit (Darknet::Layer *l, size_t workspace_size_limit) |
| void | swap_binary (Darknet::Layer *l) |
| void | update_convolutional_layer (Darknet::Layer &l, int batch, float learning_rate, float momentum, float decay) |
| Darknet::Image * | visualize_convolutional_layer (const Darknet::Layer &l, const char *window, Darknet::Image *prev_weights) |
| void add_bias | ( | float * | output, |
| float * | biases, | ||
| int | batch, | ||
| int | n, | ||
| int | size | ||
| ) |

| void assisted_excitation_forward | ( | Darknet::Layer & | l, |
| Darknet::NetworkState | state | ||
| ) |


| void assisted_excitation_forward_gpu | ( | Darknet::Layer & | l, |
| Darknet::NetworkState | state | ||
| ) |


| void backward_bias | ( | float * | bias_updates, |
| float * | delta, | ||
| int | batch, | ||
| int | n, | ||
| int | size | ||
| ) |


| void backward_convolutional_layer | ( | Darknet::Layer & | l, |
| Darknet::NetworkState | state | ||
| ) |


| void binarize_weights | ( | float * | weights, |
| int | n, | ||
| int | size, | ||
| float * | binary | ||
| ) |

| void binarize_weights2 | ( | float * | weights, |
| int | n, | ||
| int | size, | ||
| char * | binary, | ||
| float * | scales | ||
| ) |
| void binary_align_weights | ( | Darknet::Layer * | l | ) |


| int convolutional_out_height | ( | const Darknet::Layer & | l | ) |

| int convolutional_out_width | ( | const Darknet::Layer & | l | ) |

| void denormalize_convolutional_layer | ( | Darknet::Layer & | l | ) |

| void forward_convolutional_layer | ( | Darknet::Layer & | l, |
| Darknet::NetworkState | state | ||
| ) |


| void free_convolutional_batchnorm | ( | Darknet::Layer * | l | ) |

| Darknet::Image get_convolutional_delta | ( | const Darknet::Layer & | l | ) |

| Darknet::Image get_convolutional_image | ( | const Darknet::Layer & | l | ) |


| Darknet::Image get_convolutional_weight | ( | const Darknet::Layer & | l, |
| int | i | ||
| ) |


| size_t get_convolutional_workspace_size | ( | const Darknet::Layer & | l | ) |

| Darknet::Layer make_convolutional_layer | ( | int | batch, |
| int | steps, | ||
| int | h, | ||
| int | w, | ||
| int | c, | ||
| int | n, | ||
| int | groups, | ||
| int | size, | ||
| int | stride_x, | ||
| int | stride_y, | ||
| int | dilation, | ||
| int | padding, | ||
| ACTIVATION | activation, | ||
| int | batch_normalize, | ||
| int | binary, | ||
| int | xnor, | ||
| int | adam, | ||
| int | use_bin_output, | ||
| int | index, | ||
| int | antialiasing, | ||
| Darknet::Layer * | share_layer, | ||
| int | assisted_excitation, | ||
| int | deform, | ||
| int | train | ||
| ) |


| void rescale_weights | ( | Darknet::Layer & | l, |
| float | scale, | ||
| float | trans | ||
| ) |


| void resize_convolutional_layer | ( | Darknet::Layer * | l, |
| int | w, | ||
| int | h | ||
| ) |


| void rgbgr_weights | ( | const Darknet::Layer & | l | ) |


| void set_specified_workspace_limit | ( | Darknet::Layer * | l, |
| size_t | workspace_size_limit | ||
| ) |


| void swap_binary | ( | Darknet::Layer * | l | ) |

| void update_convolutional_layer | ( | Darknet::Layer & | l, |
| int | batch, | ||
| float | learning_rate, | ||
| float | momentum, | ||
| float | decay | ||
| ) |


| Darknet::Image * visualize_convolutional_layer | ( | const Darknet::Layer & | l, |
| const char * | window, | ||
| Darknet::Image * | prev_weights | ||
| ) |

