Neural network structure. Contains all of the layers. Created by Darknet::CfgFile::create_network().
More...
#include "darknet_network.hpp"
Neural network structure. Contains all of the layers. Created by Darknet::CfgFile::create_network().
◆ adam
| int Darknet::Network::adam |
◆ adversarial
| int Darknet::Network::adversarial |
◆ adversarial_lr
| float Darknet::Network::adversarial_lr |
◆ angle
| float Darknet::Network::angle |
◆ aspect
| float Darknet::Network::aspect |
◆ attention
| int Darknet::Network::attention |
◆ augment_speed
| int Darknet::Network::augment_speed |
◆ B1
| float Darknet::Network::B1 |
◆ B2
| float Darknet::Network::B2 |
◆ badlabels_reject_threshold
| float* Darknet::Network::badlabels_reject_threshold |
◆ badlabels_rejection_percentage
| float Darknet::Network::badlabels_rejection_percentage |
◆ batch
| int Darknet::Network::batch |
◆ batches_cycle_mult
| int Darknet::Network::batches_cycle_mult |
◆ batches_per_cycle
| int Darknet::Network::batches_per_cycle |
◆ benchmark_layers
| int Darknet::Network::benchmark_layers |
◆ blur
| int Darknet::Network::blur |
◆ burn_in
| int Darknet::Network::burn_in |
The number of channels for the network. Typically 3 when working with RGB images.
◆ center
| int Darknet::Network::center |
◆ clip
| float Darknet::Network::clip |
◆ contrastive
| int Darknet::Network::contrastive |
◆ contrastive_color
| int Darknet::Network::contrastive_color |
◆ contrastive_jit_flip
| int Darknet::Network::contrastive_jit_flip |
◆ cost
| float* Darknet::Network::cost |
◆ cuda_graph
| void* Darknet::Network::cuda_graph |
◆ cuda_graph_exec
| void* Darknet::Network::cuda_graph_exec |
◆ cuda_graph_ready
| int* Darknet::Network::cuda_graph_ready |
◆ cudnn_half
| int Darknet::Network::cudnn_half |
◆ cur_iteration
| int* Darknet::Network::cur_iteration |
◆ current_subdivision
| int Darknet::Network::current_subdivision |
◆ decay
| float Darknet::Network::decay |
◆ delta
| float* Darknet::Network::delta |
◆ delta_gpu
| float* Darknet::Network::delta_gpu |
◆ delta_rolling_avg
| float* Darknet::Network::delta_rolling_avg |
◆ delta_rolling_max
| float* Darknet::Network::delta_rolling_max |
◆ delta_rolling_std
| float* Darknet::Network::delta_rolling_std |
◆ details
◆ dynamic_minibatch
| int Darknet::Network::dynamic_minibatch |
◆ ema_alpha
| float Darknet::Network::ema_alpha |
◆ eps
| float Darknet::Network::eps |
◆ equidistant_point
| int Darknet::Network::equidistant_point |
◆ exposure
| float Darknet::Network::exposure |
◆ flip
| int Darknet::Network::flip |
horizontal flip 50% probability augmentaiont for classifier training (default = 1)
◆ gamma
| float Darknet::Network::gamma |
◆ gaussian_noise
| int Darknet::Network::gaussian_noise |
◆ global_delta_gpu
| float* Darknet::Network::global_delta_gpu |
◆ gpu_index
| int Darknet::Network::gpu_index |
The height of the network. Must be divisible by 32. E.g, 480.
◆ hierarchy
◆ hue
| float Darknet::Network::hue |
◆ index
| int Darknet::Network::index |
◆ init_sequential_subdivisions
| int Darknet::Network::init_sequential_subdivisions |
◆ input
| float* Darknet::Network::input |
◆ input16_gpu
| float** Darknet::Network::input16_gpu |
◆ input_gpu
| float** Darknet::Network::input_gpu |
◆ input_pinned_cpu
| float* Darknet::Network::input_pinned_cpu |
memory allocated using cudaHostAlloc() which is used to transfer between the GPU and CPU
◆ input_pinned_cpu_flag
| int Darknet::Network::input_pinned_cpu_flag |
◆ input_state_gpu
| float* Darknet::Network::input_state_gpu |
◆ inputs
| int Darknet::Network::inputs |
◆ label_smooth_eps
| float Darknet::Network::label_smooth_eps |
◆ layers
Each section in the .cfg file is converted into a layer.
- See also
- n
◆ learning_rate
| float Darknet::Network::learning_rate |
◆ learning_rate_max
| float Darknet::Network::learning_rate_max |
◆ learning_rate_min
| float Darknet::Network::learning_rate_min |
◆ letter_box
| int Darknet::Network::letter_box |
◆ loss_scale
| float Darknet::Network::loss_scale |
◆ max_batches
| int Darknet::Network::max_batches |
◆ max_chart_loss
| float Darknet::Network::max_chart_loss |
◆ max_delta_gpu_size
| size_t Darknet::Network::max_delta_gpu_size |
◆ max_input16_size
| size_t* Darknet::Network::max_input16_size |
◆ max_output16_size
| size_t* Darknet::Network::max_output16_size |
◆ mixup
| int Darknet::Network::mixup |
◆ momentum
| float Darknet::Network::momentum |
◆ mosaic_bound
| int Darknet::Network::mosaic_bound |
The number of layers in the network.
- See also
- layers
◆ num_boxes
| int Darknet::Network::num_boxes |
◆ num_sigmas_reject_badlabels
| float Darknet::Network::num_sigmas_reject_badlabels |
◆ num_steps
| int Darknet::Network::num_steps |
◆ optimized_memory
| int Darknet::Network::optimized_memory |
◆ output
| float* Darknet::Network::output |
◆ output16_gpu
| float** Darknet::Network::output16_gpu |
◆ output_gpu
| float* Darknet::Network::output_gpu |
◆ outputs
| int Darknet::Network::outputs |
◆ policy
◆ power
| float Darknet::Network::power |
◆ resize_step
| int Darknet::Network::resize_step |
◆ rewritten_bbox
| int* Darknet::Network::rewritten_bbox |
◆ saturation
| float Darknet::Network::saturation |
◆ scale
| float Darknet::Network::scale |
◆ scales
| float* Darknet::Network::scales |
◆ seen
| uint64_t* Darknet::Network::seen |
◆ seq_scales
| float* Darknet::Network::seq_scales |
◆ sequential_subdivisions
| int Darknet::Network::sequential_subdivisions |
◆ state_delta_gpu
| float* Darknet::Network::state_delta_gpu |
◆ step
| int Darknet::Network::step |
◆ steps
| int* Darknet::Network::steps |
◆ subdivisions
| int Darknet::Network::subdivisions |
◆ time_steps
| int Darknet::Network::time_steps |
◆ total_bbox
| int* Darknet::Network::total_bbox |
◆ track
| int Darknet::Network::track |
◆ train
| int Darknet::Network::train |
◆ train_images_num
| int Darknet::Network::train_images_num |
◆ truth
| float* Darknet::Network::truth |
◆ truth_gpu
| float** Darknet::Network::truth_gpu |
◆ truths
| int Darknet::Network::truths |
◆ try_fix_nan
| int Darknet::Network::try_fix_nan |
◆ use_cuda_graph
| int Darknet::Network::use_cuda_graph |
The width of the network. Must be divisible by 32. E.g., 640.
◆ wait_stream
| int Darknet::Network::wait_stream |
◆ weights_reject_freq
| int Darknet::Network::weights_reject_freq |
◆ workspace
| float* Darknet::Network::workspace |
◆ workspace_size_limit
| size_t Darknet::Network::workspace_size_limit |
The documentation for this struct was generated from the following file: